CURRENT ELECTRICITY

1. ELECTRIC CURRENT

$$I_{av} = \frac{\Delta q}{\Delta t}$$
 and instantaneous current

$$i =. \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$$

2. ELECTRIC CURRENT IN A CONDUCTOR

$$\begin{split} I &= nAeV. \\ v_d &= \frac{\lambda}{\tau}, \\ v_d &= \frac{\frac{1}{2} \left(\frac{eE}{m}\right) \tau^2}{\tau} = \frac{1}{2} \frac{eE}{m} \tau, \end{split}$$

 $I = neAV_d$

3. CURRENT DENSITY

$$\vec{J} = \frac{dI}{ds} \vec{n}$$

4. ELECTRICAL RESISTANCE

I = neAV_d = neA
$$\left(\frac{eE}{2m}\right) \tau = \left(\frac{ne^2\tau}{2m}\right) AE$$

$$E = \frac{V}{\ell} \quad \text{so} \qquad I = \left(\frac{ne^2\tau}{2m}\right) \left(\frac{A}{\ell}\right) V = \left(\frac{A}{\rho\ell}\right) V = V/R \implies V = IR$$

 $\boldsymbol{\rho}$ is called resistivity (it is also called specific resistance) and

 $\rho = \frac{2m}{ne^2\tau} = \frac{1}{\sigma}, \sigma \text{ is called conductivity. Therefore current in conductors}$ is proportional to potential difference applied across its ends. This is **Ohm's Law**. Units:

CLICK HERE

>>

 $R \rightarrow ohm(\Omega), \rho \rightarrow ohm - meter(\Omega - m)$

also called siemens, $\sigma \rightarrow \Omega^{-1}m^{-1}$.

Dependence of Resistance on Temperature :

 $R = R_{o}(1 + \alpha \theta).$ Electric current in resistance

$$I = \frac{V_2 - V_1}{R}$$

5. ELECTRICAL POWER P = V I

$$P = I^2 R = VI = \frac{V^2}{R}$$

$$H = VIt = I^2Rt = \frac{V^2}{R}t$$

$$H = I^2 RT$$
 Joule = $\frac{I^2 RT}{4.2}$ Calorie

9. KIRCHHOFF'S LAWS

- 9.1 Kirchhoff's Current Law (Junction law) $\sum I_m = \sum I_{out}$
- 9.2 Kirchhoff's Voltage Law (Loop law) $\Sigma \text{ IR} + \Sigma \text{ EMF} = 0^{\circ}.$

10. COMBINATION OF RESISTANCES : Resistances in Series:

 $R=R_1+R_2+R_3+\ldots+R_n$ (this means R_{eq} is greater then any resistor)) and $V=V_1+V_2+V_3+\ldots+V_n$

$$V_{1} = \frac{R_{1}}{R_{1} + R_{2} + \dots + R_{n}} V ; V_{2} = \frac{R_{2}}{R_{1} + R_{2} + \dots + R_{n}} V ;$$

2. Resistances in Parallel :

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Get More Learning Materials Here :

11. WHEATSTONE NETWORK : (4 TERMINAL NETWORK)

When current through the galvanometer is zero (null point or balance

13.2 Cells in Parallel:

15. AMMETER

A shunt (small resistance) is connected in parallel with galvanometer to convert it into ammeter. An ideal ammeter has zero resistance

Ammeter is represented as follows -

If maximum value of current to be measured by ammeter is I then I_{g} . $R_{g} = (I - I_{g})S$

$$S = \frac{I_G \cdot R_G}{I - I_G} \qquad \qquad S = \frac{I_G \times R_G}{I} \qquad \text{when} \qquad I >> I_G.$$

where I = Maximum current that can be measured using the given ammeter.

16. VOLTMETER

A high resistance is put in series with galvanometer. It is used to measure potential difference across a resistor in a circuit.

$$V_{A} - V_{B} = \frac{\varepsilon}{R + r} . R$$

Potential gradient $(x) \rightarrow$ Potential difference per unit length of wire

$$x = \frac{V_A - V_B}{L} = \frac{\epsilon}{R + r} \cdot \frac{R}{L}$$

Get More Learning Materials Here : 💶

🕀 www.studentbro.in

Application of potentiometer (a) To find emf of unknown cell and compare emf of two cells. In case I.

In figure (1) is joint to (2) then balance length = $\ell_1 \epsilon_1 = x \ell_1$ (1)

in case II,

In figure (3) is joint to (2) then balance length = ℓ_2

$$\varepsilon_{2} = x \ell_{2} \qquad \dots (2)$$

$$\frac{\varepsilon_{1}}{\varepsilon_{2}} = \frac{\ell_{1}}{\ell_{2}}$$

$$\varepsilon_{1}, r_{2} \qquad 10$$

$$\varepsilon_{1}, r_{2} \qquad 10$$

If any one of ϵ_1 or ϵ_2 is known the other can be found. If x is known then both ϵ_1 and ϵ_2 can be found

Similarly, we can find the value of R₂ also.

Potentiometer is ideal voltmeter because it does not draw any current from circuit, at the balance point.

(c) To find the internal resistance of cell. Ist arrangement 2nd arrangement

R,

by first arrangement $\epsilon' = x \ell_1$...(1) by second arrangement IR = $x \ell_2$

(d)Ammeter and voltmeter can be graduated by potentiometer. (e)Ammeter and voltmeter can be calibrated by potentiometer.

18. METRE BRIDGE (USE TO MEASURE UNKNOWN RESISTANCE)

If $AB = \ell \text{ cm}$, then $BC = (100 - \ell) \text{ cm}$.

Resistance of the wire between A and B , $R \propto \ell$

[\because Specific resistance ρ and cross-sectional area A are same for whole of the wire]

or $R = \sigma \ell$...(1) where σ is resistance per cm of wire.

If P is the resistance of wire between A and B then $P \propto \ell \implies P = \sigma(\ell)$ Similarly, if Q is resistance of the wire between B and C, then $Q \propto 100 - \ell$ $\therefore \qquad Q = \sigma(100 - \ell) \qquad(2)$ Dividing (1) by (2), $\frac{P}{Q} = \frac{\ell}{100 - \ell}$

CLICK HERE

>>

Applying the condition for balanced Wheatstone bridge, we get R Q = P X

 $\therefore \qquad x = R \frac{Q}{P} \qquad \qquad \text{or} \qquad X = \frac{100 - \ell}{\ell} R$

Since R and ℓ are known, therefore, the value of X can be calculated.

Get More Learning Materials Here :

